1	
2	
3	Effects of stratification, germination temperature, and pretreatment with gibberellic acid and
4	hydrogen peroxide on germination of 'Fry' muscadine (Vitis rotundifolia) seed.
5	
6	
7	
8	Patrick J. Conner ¹
9	Department of Horticulture, University of Georgia-Tifton Campus, 4604 Research Way, Tifton,
10	GA 31793
11	
12	
13	
14	
15	
16	
17	
18	¹ Corresponding author. E-mail: <u>pconner@uga.edu</u>

Effects of stratification, germination temperature, and pretreatment with gibberellic acid and
hydrogen peroxide on germination of 'Fry' muscadine (*Vitis rotundifolia*) seed.

23

24 Additional index words. propagation, H₂O₂

25

26 Abstract: Germination of muscadine seed has frequently been low and irregular in the 27 University of Georgia breeding program. A systematic study was undertaken to determine the 28 best seed treatments and germination conditions for muscadine seed. Open pollinated seeds of 29 'Fry' muscadine were used for all treatments. Stratification of seeds was performed by placing 30 dry seed in damp verniculite at 4C for periods of 0, 30, 60, and 90 d. The 90 d stratification 31 period gave the highest germination percentage, with successively lower germination in the 32 shorter stratification treatments. Pretreatment of seeds prior to stratification with three rates (0.5,1.0, and 2.0 M) of hydrogen peroxide (H_2O_2) and four rates (1, 2, 4, and 8 g•L⁻¹) of gibberellic 33 34 acid (GA₃) were used in an attempt to promote germination. Low rates of H₂O₂ (0.5 M) and GA₃ $(1 \text{ g} \cdot \text{L}^{-1})$ were beneficial in some instances, while high rates of GA₃ were detrimental. Nicking 35 36 the seed coats prior to stratification and soaking seeds in running water after stratification were 37 ineffective in promoting germination. Germination temperatures of 32/22C (8h/16h) were 38 superior to 22/22C, 27/22C, and 37/22C.

39

40 The genus *Vitis* contains two subgenera, *Euvitis* (bunch grapes) and *Muscadinia*41 (muscadine grapes). The muscadine grape, *Vitis rotundifolia* Michx., is the only commonly

cultivated member of the *Muscadinia* subgenus. Muscadine grapes are native to the southern
United States and have been cultivated for over 400 years. The muscadine grape differs from the
familiar bunch grape (*Vitis labrusca, V. vinifera,* and their various hybrids) in several
morphological characteristics including that they have smaller clusters, the berries abscise from
the cluster (shatter) at maturity, the tendrils are unbranched, and the berries have thick skins and
a unique fruity aroma.

48 The University of Georgia has been breeding muscadine grapes for nearly 100 years, and 49 routinely germinates large seedling populations. In the only published study on muscadine seed 50 germination to our knowledge, Nesbitt et al. (1976) found that germination rates in excess of 51 90% could be obtained by cold-stratifying seed in moist sand for 80 to 100 d before planting. 52 Unfortunately we are unable to replicate those results, and the breeding program has been 53 hampered by erratic germination timings and low germination rates of muscadine seed. 54 Barriers to germination have been better studied in *Euvitis* grapes, and these studies 55 provide a starting point to investigations into muscadine seed germination. *Euvitis* seed 56 generally has very low germination rates until endodormancy has been removed (Ellis et al., 1983). Dormancy removal is generally achieved by cold-stratification of the seeds for a period 57 58 of three to four months (Einset and Pratt, 1975), but in many varieties this results in only modest 59 germination rates (Ellis et al., 1983; Scott and Ink, 1950; Selim et al., 1981). Grape seeds have a 60 thick, tough seed coat that can be a mechanical barrier to germination. Attempts at scarifying 61 seeds with sulfuric acid provided minimal benefits and was harmful to seed viability if not 62 handled carefully (ChaiWei and ShyiKuan, 2003; Scott and Ink, 1950), however, Ramirez (1968) 63 found that nicking seeds during extraction with a blender blade was beneficial to germination. Treatment of grape seeds with gibberellic acid (GA₃) prior to stratification has generally been 64

65	found to promote germination (Kachru et al., 1972; Pal et al., 1976; Selim, et al., 1981; Yeou-
66	Der et al., 1967). Ellis et al. (1981) found that the effect of the GA_3 could be improved by an
67	additional pretreatment in 0.5 M H_2O_2 prior to the GA ₃ pretreatment. In addition, an alternating
68	germination temperature of 30/20C, with the higher temperature being applied for 8 h every 24 h
69	was superior to a single germination temperature. Kachru et al., 1972 attribute grape seed
70	dormancy to a water soluble inhibitor, most likely abscisic acid, which can be removed with
71	leaching by running water.
72	The goal of this study was to test various seed treatments in an attempt to improve overall
73	germination rates of muscadine seed and lower the lengthy stratification periods now employed.
74	
75	Materials and Methods
76	
77	Plant material. Open pollinated seeds of 'Fry' muscadine were used for all treatments. Fully
78	mature 'Fry' berries were collected from vines located at the University of Georgia - Tifton
79	Campus. Seed was collected on 13 Sept. 2005 for Expt. 1 and Expt. 2, and on 20 Sept. 2006 for
80	Expt. 3. Seed was extracted, washed, float checked, and air dried for several days to
81	approximately 23% moisture. Dry seed was then packed in polyethylene bags and stored at $4C$
82	prior to treatment initiation.
83	
84	<i>Expt. 1: Effects of</i> 0.5 <i>M</i> H_2O_2 and 1 g•L ⁻¹ GA_3 pretreatment and cold stratification period on
85	germination rate. Seed received one of the following pretreatments prior to cold stratification 1)
86	48 h water soak; 2) 24 h soak in 0.5 M H_2O_2 followed by a 24 h soak in water; 3) 24 h soak in
87	water followed by a 24 h soak in 1 g•L ⁻¹ gibberellic acid (GA ₃); 4) 24 h soak in 0.5 M H ₂ O ₂

followed by a 24 h soak in 1 $g \cdot L^{-1} GA_3$. Pretreatments were carried out by placing 25 seeds in 88 89 10 mL of solution at 22C. After the final soak seeds were washed 3× in sterile distilled water 90 and packed in 50 mL of damp sterile vermiculite and sealed in polyethylene bags. Seed was 91 stratified at 4C + 2C in a dark refrigerator for periods of 0, 30, 60 or 90 d. Pretreatments were 92 applied so that all stratification treatments concluded on 12 Jan. 2006. Each pretreatment × 93 stratification period treatment was applied to four replications of 25 seeds. For germination tests 94 seeds were planted in $8 \times 8 \times 13$ cm pot in moist vermiculite. Pots were placed in an incubator 95 set at an alternating cycle of 30/24C with the higher temperature being applied for 8 h of each 24 h cycle. Treatments were monitored weekly for 6 weeks for the presence of germinated seed. 96 97 Seeds were considered to have germinated when the cotyledons extended above the surface of 98 the vermiculite. At the end of the germination period ungerminated seed was removed and tested 99 for viability by a tetrazolium test. This was done by bisecting the seed with a knife and 100 incubating one half the bisected seed in a 0.5% tetrazolium chloride solution for 2 h at 40C and 101 observing the color change.

102

103 *Expt. 2: Effects of GA*₃, H_2O_2 , running water, and seed coat nick pretreatments on germination 104 rate. Seed received one of 4 rates of H_2O_2 (0, 0.5, 1.0, or 2.0 M) or one of 5 rates of GA_3 (0, 1, 2, 4 or 8 g•L⁻¹) prior to stratification. Pretreatments were applied by soaking 25 seeds in 10 mL 105 106 of solution for 24 h at 22C. A seed coat nick pretreatment was applied by clipping the basal end 107 of the seed coat with a pair of fingernail clippers and then soaking the seed for 24 h in water 108 prior to stratification. After pretreatment, seeds were stratified as described in Expt. 1 for 60 d. 109 After stratification, a running water treatment was applied by placing seeds that had received 0 M H₂O₂ and 0 g•L⁻¹ GA₃ pretreatments in cotton bags under a running faucet of 22C water for 1, 110

2, 4, or 8 d prior to planting. Each treatment was applied to four replications of 25 seeds. Seed
was planted on 15 May 2006. For germination tests, seeds were treated as described in Expt. 1
except that each replication of 25 seeds was placed in a 3.8 L pot in a greenhouse set for a
minimum temperature of 21C and maximum temperatures were 30 to 35C. Seed germination
was recorded weekly for a period of 5 weeks.

116

117 *Expt. 3:* Effect of germination temperature, seed stratification period, and seed type on 118 germination rate. Seed was pretreated by soaking seeds for 24 h in 0.5 M H₂O₂ followed by a 24 h soak in 1 $g \cdot L^{-1}$ GA₃. Seed was then cold stratified as described in Expt. 1 for periods of 0, 30, 119 120 60, or 90 d. The effect of seed type was investigated by taking a batch of seed at the beginning 121 of the experiment and keeping it moist. This seed was then handled the same way as the dry 122 seed in regards to pretreatments and subjected to a 90 d stratification period. Pretreatments were 123 applied so that all stratification periods ended on 11 Jan. 2007. Each pretreatment × stratification 124 period treatment was applied to four replications of 25 seeds. Each replication was planted in 8 125 \times 8 \times 13 cm pots of moist vermiculite in growth chambers. Chambers were set for 8 h light at 126 22, 27, 32, or 37C, followed by 16 h darkness at 22C. Pots were monitored weekly for 8 weeks 127 for the presence of germinated seed. The rate of seedling emergence was evaluated by 128 calculating the average week of seedling emergence for all germinated seeds of a replication. 129

130 Data analysis. Final germination percentage and percentage viable seed of Expt. 1 was analyzed 131 using a three-way analysis of variance (SigmStat) with interactions tested using Fisher's least 132 significant difference test. Percent viable seed was calculated as the number of germinated seed 133 and the number of seed tested as viable via the tetrazolium test divided by the total number of

134 seed in the replication. Percentage data was arcsine-square root transformed for statistical 135 analysis, but raw data is reported. Regression analysis (Minitab) was used to determine the best-136 fit relationship between H_2O_2 and GA_3 concentration pretreatment and germination percentage in 137 Expt. 2. Arcsine-square root transformation did not improve these relationships, so 138 untransformed data is presented. One-way ANOVA was used to test for differences in 139 germination percentage between seed coat nick and running water treatments versus the control. 140 Percentage data was arcsine-square root transformed for statistical analysis. The effect of germination temperature, stratification period, and seed type on final germination percentage and 141 142 rate of seedling emergence in Expt. 3 was tested using general linear model analysis (Minitab). 143 Germination percentage was arcsine-square root transformed for statistical analysis, but raw data 144 is reported. The data for the 0 d of stratification was not included in the statistical analysis of 145 rate of seedling emergence because no seed germinated in some treatments.

146

147 Results

148

149 Stratification period had a strong effect on final germination percentage, with germination rate increasing up to the maximum 90 d period (Table 1). Both the 0.5 M H_2O_2 and 1.0 g•L⁻¹GA₃ 150 151 pretreatments increased final germination percentage. The positive effect of the pretreatments was most prominent when the seed had received less than the maximum 90 d stratification 152 153 period. A combination of both pretreatments together gave superior results to either pretreatment 154 alone. Neither pretreatment had an effect on seed viability (Table 2), but the shorter 155 stratification periods had significantly lower seed viability. This was likely due to the poor 156 germination of these treatments, giving a greater chance for the seeds to rot in the germination

media. Even in the highest germination treatments, final germination rates were still much lowerthan seed viability, indicating that dormancy had not been fully broken by any of the treatments.

159 In the second experiment, higher concentrations of GA_3 and H_2O_2 were tested in the 160 pretreatments to determine if further benefits could be realized. A stratification period of 60 d 161 was chosen for this experiment because that period had given the largest effect with 162 pretreatments in Expt. 1. In contrast to the first experiment, H_2O_2 pretreatment was not found to 163 be associated with germination percentage in this experiment, although the 0.5 M H₂O₂ treatment 164 had a numerically higher germination rate (data not shown). The GA₃ pretreatment was found to 165 reduce germination (Fig. 1), although this was mostly due to a reduction in germination at the 4 and 8 $g \cdot L^{-1}$ rates. Mechanically scarifying the seed coat by nicking the basal end of the seed did 166 167 not significantly affect seed germination rate. Placing seeds in running water for 1 to 8 d after 168 stratification was also ineffective in promoting germination (data not shown).

169 Germination temperature had a significant effect on final germination rates, with the 170 32/22C regime giving the highest germination rate overall (Table 3). This temperature profile 171 was resulted in an average of nearly double the control of 22/22C, and was especially 172 advantageous after the shorter stratification periods. Average time to emergence decreased with 173 increasing stratification period and increasing germination temperature (Table 4). Seedlings 174 emerged approximately 0.7 weeks sooner at the 37/22C temperature than at the 22/22C 175 temperature. Interestingly, emergence at the 32/22C temperature was significantly slower than at 176 27/22C. This may be due the larger percentage of seed that germinated at 32/22C, whereas at the 177 cooler temperature only the most vigorous seed germinated. Drying of the seed had no effect on 178 final seed germination percentage (Table 3), but did slow the rate of germination (Table 4). 179

180 Discussion

181

182 Muscadine grapes are native to the southern U.S. where winter temperatures commonly fluctuate 183 from mild to cold. It is not surprising, therefore, that muscadine seeds have a relatively 184 pernicious endodormancy that prevents them from germinating during brief warm periods in the 185 winter. In addition, muscadine seed has a very thick seed coat to protect the seed as it travels 186 through the digestive tract of animal dispersers. As a result, muscadine seed germination can be 187 slow and erratic. Once the seed germinates, however, growth is usually quite vigorous. In our 188 breeding program, seed is typically planted in January so that seedlings can be transplanted in the 189 field in March. This allows vines a maximum amount of time to grow in the first year, and a 190 large percentage will flower the second year. This process is hampered in some crosses by 191 delayed or poor germination, necessitating a better protocol to remove seed dormancy. Ideally 192 such a protocol would be relatively easy to apply to progenies of several thousand seed and 193 would require a relatively short stratification period. 194 As a starting point, this experiment investigated the effects of the GA_3 and H_2O_2 195 pretreatments recommended by Ellis et al. (1983) for *Euvitis* grape seed. GA₃ is an exogenous 196 growth regulator which promotes germination by stimulating the activation of food mobilizing 197 enzymes (Hartmann and Kester, 1983). The mode of action of H₂O₂ in the promotion of

198 germination is unclear, but may involve the scarification of the seed coat (Chien and Lin, 1994;

199 Keeley and Fotteringham, 1998) or oxidation of germination inhibitors (Ogawa and Iwabuchi,

200 2001). While both pretreatments promoted muscadine germination in Expt. 1, the benefits were

201 marginal and did not substitute for longer stratification periods. In addition, even the best

202 combination of seed treatments still left over 30% of the seed with unbroken dormancy as judged

by the viability of ungerminated seed. This is in contrast to Ellis et al. (1983) where these
pretreatments resulted in the germination of virtually all viable seed.

205 Given the marginal efficacy of the previous pretreatments, Expt. 2 investigated a wider 206 range of concentrations of GA_3 and H_2O_2 . Increasing the H_2O_2 concentration was ineffective in 207 promoting germination, and increasing the GA₃ concentration resulted in a decrease in germination. Concentrations of GA₃ of 2 $g \cdot L^{-1}$ were also found to by Ellis et al. (1983) to cause 208 209 the death of a percentage of seed in some seed lots. The H_2O_2 pretreatment appears to be 210 marginally valuable since it gave a significant benefit in the first experiment and while not significant was numerically better in the second experiment. The 1 $g \cdot L^{-1} GA_3$ treatment may 211 212 also be beneficial since it was favorable in the first experiment and only appeared to be 213 inhibitory at the higher rates in the second experiment. Mechanically scarifying seeds by nicking 214 the seed coat did not improve germination, suggesting that dormancy is not controlled by the 215 impermeability of the seed coat. Leaching the seeds after stratification was also ineffective in 216 reducing seed dormancy, also in contrast to what was found in *Euvitis* (ChiaWei and ShyiKuan, 217 2003; Ellis et al., 1983).

Germination temperatures have a strong influence on the germination of *Euvitis* seed. Ellis et al. (1983) found that an alternating temperature of 30/20C resulted in increased germination over a single temperature of 20 or 30C. Results from Expt. 3 indicate that muscadine seed germination is improved by providing at least a brief period of warmer temperatures. However, a single warm temperature was not tested, so it is not clear if a single warm temperature would provide the same benefit. We have previously noticed that muscadine seedling progenies planted later in the spring emerge sooner than those planted earlier in the

year, and the results of Expt. 3 confirm the observation that warmer temperatures increase thespeed of germination.

227	As a practical matter, the results of these experiments suggest that a 0.5 M $\mathrm{H_2O_2}$ and a 1
228	$g \cdot L^{-1}$ GA ₃ pretreatment are not likely to be harmful and will benefit muscadine seed germination
229	in at least some instances. Seed should be stratified at least 90 d and germinated in an
230	environment where daytime temperatures are allowed to reach 30C.
231	
232	Literature Cited
233	
234	ChiaWei, S. and O. ShyiKuan. 2003. Improving seed germination of 'Kyoho' grape by
235	treatments of gibberellic acid, leaching, scarification, and stratification. J. Agr. Res. China
236	52:14-22.
237	
238	Chien, C. and T. Lin. 1994. Mechanism of hydrogen peroxide in improving the germination of
239	Cinnamon camphora seed. Seed Sci. & Technol. 22:231-236.
240	
241	Einsett, J. and C. Pratt. 1975. Grapes, p.130-135. In: J. Janick and J.N. Moore (eds.). Advances
242	in fruit breeding. Purdue Univ. Press, West Lafayette, Ind.
243	
244	Ellis, R.H., T.D. Hong and E.H. Roberts. 1983. A note on the development of a practical
245	procedure for promoting the germination of dormant seed of grape (Vitis spp.). Vitis
246	22:211-219.

248	Hartman, H.T. and D.E. Kester. 1983. Plant propagation principles and practices. 4 th ed.
249	Prentice Hall, Englewood Cliffs, N.J.
250	
251	Kachru, R.B., R.N. Singh and I.S. Yadav. 1972. Physiological studies on dormancy in grape
252	seeds (Vitis vinifera var. Black Muscat). Vitis 11:289-295.
253	
254	Keeley, J.E. and C.J. Fotteringham. 2003. Smoke-induced seed germination in California
255	chaparral. Ecology 79:2320-2336.
256	
257	Nesbitt, W.B., J.B. Earp, and H.J. Kirk. 1976. After ripening and stratification of Vitis
258	rotundifolia seed improves germination. HortScience 11:38. (Abstr.)
259	
260	Ogawa, K. and M. Iwabuchi. 2001. A mechanism for promoting the geremination of Zinnia
261	elegans seeds hydrogen peroxide. Plant and Cell Phys. 42:286-291.
262	
263	Pal, R.N., R. Singh, V.K. Vij and J.N. Sharma. 1976. Effect of gibberellins GA ₃ , GA _{4/7} , and
264	GA ₁₃ on seed germination and subsequent seedling growth in Early Muscat grape (Vitis
265	vinifera). Vitis 14:265-268.
266	
267	Ramirez, O.C. 1968. Comparative embryogenesis of Erie, Concord, and Golden Muscat grape
268	varieties as related to the germinability of seeds. Ph.D. dissertation, Rutgers (Diss. Abstr.
269	29:1230-В).
270	

271	Schrader, J.A. and W.R. Graves. 2005. Seed germination of Dirca (Leatherwood):
272	pretreatments and interspecific comparisons. HortScience 40:1838-1842.
273	
274	Scott, D.H. and D.P. Ink. 1950. Grape seed germination experiments. Proc. Amer. Soc. Hort.
275	Sci. 56:134-139.
276	
277	Selim, H.H., F.A. Ibrahim, M.A. Fayek, S.A. El-Deen and N.M. Gamal. 1981. Effect of
278	different treatments on germination of Romi red grape seeds. Vitis 20:115-121.
279	
280	Yeou-Der, K., R.J. Weaver and R.M. Pool. 1967. Effect of low-temperature and growth
281	regulators on germination of seeds of 'Tokay' grapes. J. Amer. Soc. Hort. Sci. 92:323-330.

Pretreatments		Seed stratification period (d)					
H_2O_2	GA ₃	0	30	60	90	Avg.	
(M)	$(g \bullet L^{-1})$						
0	0	0% ^z	11%	31%	55%	24%	
0.5	0	0%	17%	41%	51%	27%	
0	1	3%	12%	47%	58%	30%	
0.5	1	4%	24%	52%	63%	36%	
	Avg. ^y	2%	16%	43%	57%		

Table 1. Effect of H_2O_2 and GA_3 pretreatments and stratification period on muscadine seed final germination percentage.

Significance	df	<i>P</i> value	
Stratification period (SP)	3	***	
H_2O_2	1	*	
GA ₃	1	***	
$SP imes H_2O_2$	3	NS	
SP x GA ₃	3	NS	
$H_2O_2 \ge GA_3$	1	NS	
SP x GA ₃ x H ₂ O ₂	3	NS	

²85 ²Percent germinated seed after 6 weeks.

288 NS, *,***Nonsignificant or significant at $P \le 0.05$, or 0.001, respectively.

^yMeans followed by same letter are not significantly different according to Duncan's multiple

²⁸⁷ range test, $P \leq 0.001$.

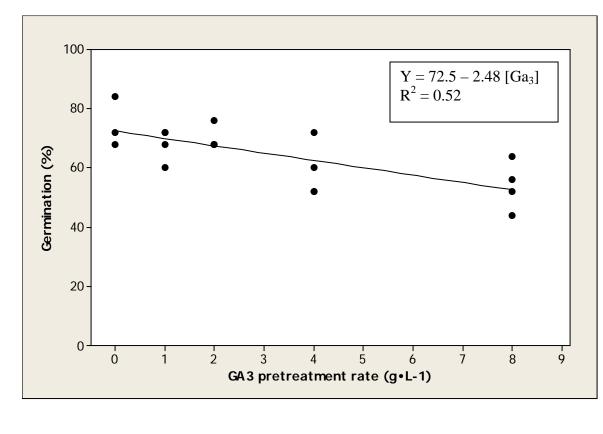
291 Table 2. Effect of H₂O₂ and GA₃ pretreatments and stratification period on muscadine seed

292 viability.

Seed stratification period ^z	Viable seed ^y
(d)	(%)
0	88 c
30	89 bc
60	97 a
90	95 ab

Significance

Stratification period (SP)	***
H_2O_2	NS
GA ₃	NS
$SP \times H_2O_2$	NS
SP x GA ₃	NS
$H_2O_2 \ge GA_3$	NS
SP x GA ₃ x H ₂ O ₂	NS


293 ^zCombined data across all H_2O_2 and GA_3 pretreatments.

^yViable seed percentage is the number of germinated seed plus ungerminated seed which stained

- as viable divided by the total number of seed tested. Means followed by same letter are not
- significantly different according to Fisher's least significant difference, $P \le 0.001$.
- 297 NS,.***Nonsignificant or significant at P \leq 0.001, respectively.
- 298

- 303 Fig. 1. Regression of percent germination of 'Fry' muscadine seed on rate
- of GA₃ pretreatment. For each replication, 25 seeds were soaked in 10 mL
- of the GA₃ solution for 24 h and then stratified for 60 days. Four
- 306 replications of 25 seeds were conducted for each GA₃ pretreatment rate.
- 307 Final germination percentage was calculated after 5 weeks.

- 311
- 312
- 313

Table 3. Effects of germination temperature, stratification period, seed type on 'Fry' muscadine

Stratification period (d)		0	30	60	90	90	
Seed type ^z			D	Pry		Fresh	Avg
Germination temp	22/22C ^y	0% ^x	11%	22%	49%	38%	21%
	27/22C	2%	7%	28%	53%	50%	23%
	32/22C	16%	36%	44%	68%	73%	41%
	37/22C	7%	23%	47%	36%	46%	28%
	Avg.	6%	19%	35%	52%	52%	
Significance	df						
Stratification period (SP)	3	***					
Germination temp (GT)	3	***					
Seed type	1	NS					
$SP \times GT$	9	**					

315 seed germination percentage.

²Dry seed was dried for several days before processing, fresh seed was never allowed to dry.

- 317 ^yTemp 1 / temp 2. Seeds were placed in light at temperature 1 for 8 h and in darkness at
- temperature 2 for 16 h.
- 319 ^xFinal germination percentage after 8 weeks.
- 320 NS, **.***Nonsignificant or significant at $P \le 0.01$, or 0.001, respectively.
- 321

322 Table 4. Effect of germination temperature, stratification period, and seed handling on

323 rate of 'Fry' muscadine seedling emergence.

Stratification period (d)		30	60	90	90	
Seed type ^z		Dry	Dry	Dry	Fresh	Avg.
Germination temp	22/22C ^y	4.5 ^x	4.2	3.7	4.1	4.1
	27/22C	4.3	3.3	3.2	3.6	3.6
	32/22C	4.5	3.7	3.4	3.8	3.9
	37/22C	3.6	3.2	3.1	3.7	3.4
	Avg.	4.2	3.6	3.3	3.8	
Significance	df					
Stratification period (SP)	3	***				
Germination temperature (GT)	3	***				
Seed type	1	***				
$SP \times GT$	9	NS				

²Dry seed was dried for several days before processing, fresh seed was never allowed

325 to dry.

326 ^y Temp 1 / temp 2. Seeds were placed in light at temperature 1 for 8 h and in darkness at

- temperature 2 for 16 h.
- 328 ^xAverage week of seedling emergence.
- 329 NS, ***Nonsignificant or significant at P \leq 0.001, respectively.
- 330
- 331